×
Traktatov.net » Общественная организация человечества (вычисления и таблицы) » Читать онлайн
Страница 2 из 12 Настройки

Понятно, что число обществ первого порядка громадно, второго - меньше, третьего - еще меньше и т.д. Последних - одно.

Население (Н) совокупности всех (в) обществ (о) одного разряда будет:

Нво1, Нво2, Нво3... Нвок... Нвоп,

т.е. население всех обществ первого порядка, второго (2), какого-нибудь (к) и последнего (п). Население всех обществ считается вместе с выборными или до выборов. Так что население всех обществ первого порядка составляет все население Земли. Из него извлекается путем выборов все население обществ второго порядка, из последнего также население всех обществ третьего порядка и т.д. Население верховного общества извлекается из всех обществ предпоследнего порядка. Пусть всех обществ 6 разрядов. Если вдвинуть высший шестой в пятые общества, пятые в четвертые и, наконец, вторые в первые, то составится все население Земли (не считая отрубников и колоний несовершенных).

Итак, население всех обществ первого порядка до выборов выразится:

1. Нво1=Н.

Число всех обществ первого порядка равно:

2.Чво1=Н:Но1

Мы тут делим все население (Н) на численность населения первого общества.

Население же всех обществ второго порядка будет (см. 2):

3. Нво2 = В1Чво1-Н(В1/Но1) ,

т.е. население всех обществ второго разряда равно половинному отбору (B1), умноженному на число обществ первого порядка. Такова же будет и численность совокупности членов советов всех обществ первого разряда.

Вообще полный (2В) отбор делится пополам. Одна часть идет на советы, другая - на составление следующих высших обществ. Обе половины чередуются своими ролями.

Также получим далее на основании предыдущих формул и обозначений:

4.Чво2=Нво2:Но2=НВ1/Но2Но1.

5. Нво3=В2Чво2=Н(В1В2/Но1Но2).

6. Чво3=Нво3:Но2=НВ1В2/Но3Но1Но2.

Вообще:

7. Нвок=Н[В1В2В3В(к-1)/Но1Но2Но3Но(к-1)].

8. Чвок=[Н/Нок]х[В1В2В3Вк-1/Но1Но2Но3Но(к-1)].

Из 7 и 8 найдем:

8.1. Нвок:Чвок=Нок,

что впрочем и так ясно. Из 7 и 8 для последнего (п) общества получим:

9.Нвоп=Н[В1/Но1]х[В2/Но2]х[В3/Но3][Вк/Нок][Вп-1/Но(п-1)] и

10. Чвоп=[Н/Ноп]х[В1/Но1]х[В2/Но2][Вк/Нок][Вп-1/Но(п-1)]=1

Из двух последних формул, деля, найдем:

10.1. Нвоп:Чвоп=Ноп.

Значит, вместо 9 имеем:

10.2. Нвоп=НопЧвоп=Ноп.

Полученное тождество служит только проверкой и указывает на ненужность формулы 10.

Если положить, что отбор во всех обществах разной высоты одинаков и равен (2В), а также приняв и численность населения каждого общества постоянной и равной (Но), то из 10 найдем:

11. Н[Вп-1/Ноп]=1.

Отсюда:

12. Но=пvН х В(п-1/п)

Здесь определяется население одного общества (Но) в зависимости от полного населения Земли (Н), величины отбора (2В) и числа всех общественных разрядов (п) или числа последовательных выборов. Логарифмируя, из той же формулы 12, получим:

16. п=[L(H)-L(B)]/[L(Ho1)-L(B)].

Важнее всего определить число (п) разных обществ, так как чем больше их, тем больше выборов и тем последний отбор (высшего совета) должен оказаться совершеннее. Из формулы 16 видно, что число этих последовательных отборов лучших людей увеличивается с увеличением населения (Н) Земли и уменьшением населения отдельного общества (Но).