Две ключевые способности, необходимые для успеха в новой экономике
1. Способность быстро овладевать сложными навыками.
2. Способность выдавать продукцию высочайшего уровня, как по качеству, так и по скорости исполнения.
Начнем с первого пункта. Прежде всего необходимо вспомнить о том, что все мы испорчены интуитивно понятным и душераздирающе простым интерфейсом множества продуктов, ориентированных на потребителя, таких как Twitter или iPhone. Однако все эти технологии – товары широкого потребления, а отнюдь не профессиональные инструменты; освоить большинство умных машин, двигающих Великое преобразование, окажется значительно сложнее.
Возьмем Нейта Силвера, которого мы ранее приводили в пример как человека, добившегося успеха благодаря плодотворной работе со сложными технологиями. Если мы пристальнее вглядимся в применяемые им методы, то обнаружим, что прогнозировать результаты выборов на основе баз данных – далеко не то же самое, что впечатать в поисковое окно запрос «Кто наберет больше голосов?». Чтобы получить желаемый результат, ему пришлось собрать большую базу данных по результатам опросов избирателей (тысячи опросов более чем от 250 проводивших опросы), а затем обработать их с помощью программы Stata — популярного программного продукта для статистического анализа данных, производимого компанией StataCorp. Профессионально работать с такими инструментами не так уж просто. Для примера приведем одну из команд, без понимания которых невозможно работать с современными базами данных наподобие тех, что использует Силвер:
CREATE VIEW cities AS SELECT name, population, altitude FROM capitals UNION SELECT name, population, altitude FROM non_capitals;
Базы данных такого типа создаются на языке, называемом SQL. Чтобы получить доступ к информации, вы посылаете им команды наподобие показанной выше. Работа с базами данных требует непростых умений. Так, например, приведенная выше команда создает «представление» (view) – виртуальную БД-таблицу в которую собираются данные из множества существующих таблиц и к которой затем можно обращаться с помощью SQL-команд как к стандартной таблице. Сложность в том, чтобы определить момент, когда именно следует создавать представления и как это делать с наилучшим результатом; и это лишь один из множества трудных пунктов, в которые необходимо глубоко вникнуть, чтобы извлекать из баз реальных данных полезную информацию.
Продолжая рассматривать пример Нейта Силвера, взглянем на технологический продукт, который он использует, – программу Stata. Это мощный профессиональный инструмент, с которым едва ли можно научиться работать интуитивно, немного в нем покопавшись. Вот, например, как звучит описание новых компонентов, представленных в последней версии программы: «В Stata 13 добавлены многие новые компоненты: эффекты условий обработки данных, многоуровневая библиотека GLM, инструменты величины мощности и объема выборки, генерализованное кодирование данных SEM, прогноз, размер эффекта, „Менеджер проектов“, длинная строка, массивы данных BLOB и многое другое». Силвер использует сложные электронные инструменты – все эти генерализованные SEM'ы и BLOB'ы – для построения многоуровневых моделей со взаимопересекающимися частями, множественных регрессий, опирающихся на заданные параметры, которые затем соотносятся с заданными весовыми функциями, используемыми в вероятностных выражениях, и так далее.