Это, однако, не составляет полного списка нашей группы. Расширяя группу, мы пополнили ее также новыми инженерами и математиками (Бигелоу и Сэведж), новыми нейроанатомами и нейрофизиологами (фон Бонин и Ллойд) и т. д. Наше первое совещание, состоявшееся весной 1946 г., было посвящено в основном ознакомительным докладам бывших участников [c.67] Принстонского совещания и общей оценке новой области всеми присутствующими. Мнение совещания было следующим. Идеи кибернетики достаточно важны и интересны, и имеет смысл устраивать такие совещания каждые полгода. Перед ближайшим совещанием надо устроить небольшой семинар для лиц, обладающих меньшей математической подготовкой, и объяснить им как можно проще существо используемых математических понятий.
Летом 1946 г., воспользовавшись поддержкой Рокфеллеровского фонда и гостеприимством Национального института кардиологии, я возвратился в Мексику, чтобы продолжить нашу совместную с д-ром Розенблютом работу. На сей раз мы решили взять неврологическую задачу, непосредственно затрагивающую вопросы обратной связи, и посмотреть, чего здесь можно добиться экспериментальным путем. В качестве подопытного животного мы выбрали кошку и решили изучать у нее четырехглавую мышцу — разгибатель бедра. Мы перереза́ли место прикрепления мышцы, присоединяли ее под известным напряжением[114] к рычагу и записывали ее сокращения в изометрических и в изотонических условиях. Для записи электрических изменений в самой мышце мы пользовались осциллографом. Обычно мы работали с кошкой, которая была сначала децеребрирована под эфирным наркозом, а затем превращена в спинномозговой препарат перерезкою спинного мозга на уровне груди. Во многих случаях для усиления рефлекторных реакций использовался стрихнин. Мышца нагружалась до тех пор, пока легкое надавливание не вызывало у нее периодических сокращений, которые на языке физиологов называются клонусом. Мы исследовали эти периодические сокращения с учетом физиологического состояния кошки, нагрузки мышцы, частоты колебаний, основного уровня, вокруг которого происходят колебания, и их амплитуды. Эти колебания мы пытались анализировать теми же методами, которыми анализировали бы механическую или электрическую систему, обнаруживающую рысканье такой же формы. Например, мы применяли методы, изложенные в книге Маккола о сервомеханизмах. [c.68]
Здесь не место обсуждать подробно значение наших результатов. Сейчас мы их проверяем и готовимся изложить для публикации. Однако установлены или весьма вероятны следующие положения: во-первых, частота клонических колебаний гораздо менее чувствительна к изменениям условий нагрузки, чем мы ожидали; во-вторых, эта частота определяется почти исключительно константами замкнутой дуги «эфферентный нерв — мышца — конечное кинестетическое тело — афферентный нерв — центральный синапс — эфферентный нерв». Эта цепь не является даже в первом приближении цепью линейных операторов относительно числа импульсов, передаваемых в секунду эфферентным нервом, но становится почти что линейной, если вместо числа импульсов взять его логарифм. Это соответствует тому обстоятельству, что огибающая раздражения эфферентного нерва весьма далека от синусоиды, но логарифм этой кривой гораздо ближе к синусоиде. Между тем в линейной колебательной системе с постоянным уровнем энергии кривая раздражения должна быть синусоидой во всех случаях, кроме множества случаев нулевой вероятности. С другой стороны, понятия проторения и торможения по своей природе являются скорее мультипликативными, чем аддитивными. Так, полное торможение означает умножение на нуль, а частичное торможение — умножение на малый множитель. С помощью понятий торможения и проторения и обсуждалась эта рефлекторная дуга