×
Traktatov.net » Кибернетика, или Управление и связь в животном и машине » Читать онлайн
Страница 35 из 176 Настройки

Всякое математическое доказательство, за которым мы можем следить, выразимо конечным числом символов. Эти символы, правда, могут быть связаны с понятием бесконечности, но связь эта такова, что ее можно установить за конечное число шагов. Так, когда в случае математической индукции мы доказываем теорему, зависящую от параметра n, мы доказываем ее сначала для n=0 и затем устанавливаем, что случай, когда параметр имеет значение n+1, вытекает из случая, когда параметр имеет значение n. Тем самым мы убеждаемся [c.58] в правильности теоремы для всех положительных значений параметра n. Более того, число правил действия в нашем дедуктивном механизме должно быть конечным, даже если оно кажется неограниченным из-за ссылки на понятие бесконечности. Ведь и само понятие бесконечности выразимо в конечных терминах. Короче говоря, как номиналистам (Гильберт), так и интуиционистам (Вейль) стало совершенно очевидно, что развитие той или иной математико-логической теории подчиняется ограничениям того же рода, что и работа вычислительной машины. Как мы увидим позже, можно даже интерпретировать с этой точки зрения парадоксы Кантора и Рассела.

Я сам в прошлом ученик Рассела и многим обязан его влиянию. Д-р Шеннон взял как тему своей докторской диссертации в Массачусетсском технологическом институте применение методов классической булевой алгебры классов к изучению переключательных систем в электротехнике[100]. Тьюринг был, пожалуй, первым среди ученых, исследовавших логические возможности машин с помощью мысленных экспериментов. Во время войны он работал для английского правительства в области электроники. В настоящее время он возглавляет программу по созданию вычислительных машин современного образца, принятую Национальной физической лабораторией в Теддингтоне.

Другим молодым ученым, перешедшим из математической логики в кибернетику, был Уолтер Питтс. Он был учеником Карнапа в Чикаго и был связан с проф. Рашевским и его школой биофизиков. Заметим попутно, что эта последняя группа сделала очень много для того, чтобы направить внимание ученых-математиков на возможности биологических наук. Правда, некоторым из нас кажется, что она находится под слишком большим влиянием задач об энергии и потенциалах и методов классической физики, чтобы наилучшим образом решать задачи по изучению систем, подобных нервной системе, которые весьма далеки от энергетической замкнутости. [c.59]

Г-н Питтс весьма удачно попал под влияние Мак-Каллоха; они вместе начали работать над проблемами, связанными с соединением нервных волокон синапсами в системы, обладающие заданными общими свойствами. Независимо от Шеннона они использовали аппарат математической логики для решения проблем, являющихся прежде всего переключательными проблемами. Мак-Каллох и Питтс ввели принципы, остававшиеся в тени в ранней работе Шеннона, хотя и вытекающие, несомненно, из идей Тьюринга: использование времени как параметра, рассмотрение сетей, содержащих циклы, и рассмотрение синаптических и других задержек[101].

Летом 1943 г. я встретил д-ра Дж. Леттвина из Бостонской городской больницы, весьма интересовавшегося вопросами, связанными с нервными механизмами. Он был близким другом г-на Питтса и познакомил меня с его работой