×
Traktatov.net » Кибернетика, или Управление и связь в животном и машине » Читать онлайн
Страница 20 из 176 Настройки

Когда около 1920 г. я пришел в МТИ, обычный способ подхода к нелинейным устройствам состоял в том, что искалось расширенное понятие импеданса, которое охватывало бы как линейные, так и нелинейные системы. В результате нелинейная электротехника пришла в состояние, подобное состоянию птолемеевой системы астрономии в последний период ее существования, когда нагромождали эпицикл на эпицикл, поправку на поправку, пока все это латаное сооружение не рухнуло под собственной тяжестью. [c.30]

Как из крушения перенапряжений птолемеевой системы возникла коперникова система с ее простым и естественным гелиоцентрическим описанием движений небесных тел, заменившим сложную и запутанную картину геоцентрической птолемеевой системы, так и для изучения нелинейных устройств и систем, электрических или механических, естественных или искусственных была необходима совершенно новая отправная точка. Я попытался нащупать новый подход в своей книге «Нелинейные задачи в теории случайных процессов»[80].

Оказывается, что с переходом к нелинейным явлениям тригонометрический анализ теряет ту ведущую роль, которая ему принадлежит в изучении линейных явлений. Это имеет четкое математическое объяснение. Процессы в электрических цепях, как и многие другие физические явления, характеризуются инвариантностью при сдвиге начала отсчета во времени. Физический опыт, начатый в полдень и достигший определенного состояния к 2 часам дня, должен достигнуть такого же состояния к 2.15, если мы начнем его в 12.15. Таким образом, физические законы говорят об инвариантах группы сдвигов во времени.

Тригонометрические функции sin nt и cos nt обнаруживают важные инвариантные свойства относительно той же группы сдвигов. Функция общего вида e>it перейдет в функцию

e>iω(t+τ) = e>iωτ e>iωt

того же вида при сдвиге, который получается прибавлением τ к t. Как следствие,

a cos n (t + τ) + b sin n (t + τ) = (a cos nτ + b sin nτ) cos nt + (b cos nτ — a sin nτ) sin nt =

= a>1 cos nt + b>1 sin nt.

Иными словами, семейства функций

Ае>iωt и A cos ωt + B sin ωt

инвариантны при сдвиге. [c.31]

Но существуют и другие семейства функции, инвариантные при сдвигах. Если рассматривать так называемое случайное блуждание, когда перемещение частицы за любой промежуток времени имеет распределение, зависящее от длительности этого промежутка и не зависящее от событий, происшедших до его начала, то ансамбль случайных блужданий также перейдет в себя при временном сдвиге.

Иными словами, инвариантность при сдвигах — это свойство тригонометрических кривых, которым обладают также другие множества функций.

В дополнение к этой инвариантности, тригонометрические функции характеризуются свойством

Ае>iωt + Ве>iωt = (А + В)е>iωt

благодаря которому они образуют чрезвычайное простое линейное множество. Легко заметить, что это свойство связано с линейностью, т. е. мы можем свести все колебания данной частоты к линейной комбинации двух колебаний. Именно это специфическое свойство обусловливает роль гармонического анализа при изучении линейных свойств электрических цепей. Функции