×
Traktatov.net » Голая статистика. Самая интересная книга о самой скучной науке » Читать онлайн
Страница 163 из 192 Настройки
.

Экстраполяция за границы имеющихся данных. Регрессионный анализ, как и все формы статистического вывода, помогает нам лучше понять окружающий мир. Мы пытаемся выявить закономерности, которые будут общими и для более крупной совокупности. Однако наши результаты будут справедливы лишь для совокупности, подобной выборке, в отношении которой выполнялся анализ. В предыдущей главе я создал уравнение регрессии, позволяющее предсказывать вес, основываясь на ряде независимых переменных. Значение R² в моей окончательной модели равнялось 0,29; это означает, что оно дает возможность объяснить разброс веса для крупной выборки людей, если все они оказались взрослыми.

Итак, что же произойдет, если мы воспользуемся нашим уравнением регрессии для предсказания вероятного веса новорожденного младенца? Давайте проверим. При рождении рост моей дочери составлял 21 дюйм. Допустим, ее возраст в момент рождения равнялся нулю; у нее, конечно же, не было образования и она не занималась спортом. Она относилась к белой расе и была женского пола. Уравнение регрессии, основанное на данных America’s Changing Lives, предсказывает, что ее вес при рождении должен иметь отрицательную величину: ‒19,6 фунта. (В действительности она весила 8,5 фунта.)

Авторы одного из исследований, выполнявшихся по заказу британского правительства (мы упоминали о них в предыдущей главе), сделали совершенно четкий вывод: «Неспособность работника влиять на свою рабочую среду ассоциируется с повышенным риском развития заболеваний сердечно-сосудистой системы среди государственных служащих»{81} (курсив мой).

Интеллектуальный анализ (слишком много переменных). Если игнорирование важных переменных представляет собой потенциальную проблему, то, может быть, ее возможным решением будет максимальное наращивание количества объясняющих переменных в уравнении регрессии? Отнюдь! Ваши результаты могут быть поставлены под угрозу, если вы включите в уравнение регрессии чересчур большое число переменных, особенно если речь идет о дополнительных объясняющих переменных без какого-либо теоретического обоснования такого решения. Например, не следует разрабатывать стратегию исследования, построенную на следующей предпосылке: поскольку нам неизвестно, что вызывает аутизм, нужно включить в уравнение регрессии как можно больше потенциальных объясняющих переменных, чтобы увидеть, что именно может оказаться статистически значимым; затем, возможно, мы сумеем получить кое-какие ответы. Если вы включите в уравнение регрессии достаточно большое число лишних переменных, то одна из них, по чистой случайности, обязательно достигнет порога статистической значимости. Еще одна опасность заключается в том, что лишние переменные порой не так-то легко распознать именно как лишние. Опытные исследователи могут всегда обосновать теоретически, постфактум, почему та или иная необычная переменная, которая в действительности совершенно бессмысленна, оказывается статистически значимой[70].

Чтобы доказать это, я нередко проделываю то же упражнение с подбрасыванием монетки, которое приводил при обсуждении вероятностей. В аудитории примерно из сорока студентов я предлагаю каждому подбросить монетку. Все, у кого выпадает решка, выводятся из игры; остальные продолжают подбрасывание. Во втором раунде те, у кого выпадает решка, снова выводятся из игры. Я продолжаю раунды до тех пор, пока у кого-то из студентов пять или шесть раз подряд не выпадет орел. Наверняка вам придут на память глупые вопросы, которые обычно задают в таких случаях: «В чем ваш секрет? Вы достаете этих орлов из рукава? Можете ли вы научить нас подбрасывать монетку так, чтобы каждый раз выпадал орел? Может быть, все дело в фирменной футболке Гарвардского университета, в которой вы пришли сегодня на лекцию?»