×
Traktatov.net » Философия Java » Читать онлайн
Страница 356 из 395 Настройки

В первом варианте IntGenerator, который мы рассмотрим, next() выдает серию четных значений:

// concurrency/EvenGenerator java

// Конфликт потоков

public class EvenGenerator extends IntGenerator { private int currentEvenValue = 0, public int nextO {

++currentEvenValue. // Опасная точка!

++currentEvenValue;

return currentEvenValue,

}

public static void main(String[] args) {

EvenChecker test(new EvenGenerator()),

}

} /* Output

Нажмите Control-С, чтобы завершить программу

89476993 не четно!

89476993 не четно!

*/// ~

Одна задача может вызвать next() после того, как другая задача выполнит первый инкремент currentEvenValue, но до второго инкремента (в позиции, помеченной комментарием «Опасная точка!»). При этом значение оказывается в «некорректном» состоянии. Чтобы доказать, что такое возможно, EvenChecker. test() создает группу объектов EvenChecker, которые непрерывно читают результаты EvenGenerator и проверяют их на четность. При обнаружении нечетного числа выводится сообщение об ошибке, и программа завершается.

Сбой рано или поздно произойдет, потому что задачи EvenChecker могут обратиться к информации EvenGenerator в «некорректном» состоянии. Впрочем, проблема может проявиться лишь после многих циклов отработки EvenGenerator; все зависит от особенностей операционной системы и других подробностей реализации. Чтобы ускорить наступление сбоя, попробуйте разместить вызов yield() между инкрементами. В этом и состоит одна из проблем многопоточного программирования: программа, содержащая ошибку, на первый взгляд работает вполне нормально — а все потому, что вероятность сбоя очень мала.

Также стоит учитывать, что сама операция инкремента состоит из нескольких шагов и может быть прервана планировщиком потоков в ходе выполнения — другими словами, инкремент в Java не является атомарной операцией. Даже простое приращение переменной может оказаться небезопасным, если не организовать защиту задачи.

Разрешение конфликтов доступа

Предыдущий пример показательно иллюстрирует основную проблему потоков: вы никогда не знаете, когда поток будет выполняться. Вообразите, что вы сидите за столом с вилкой в руках, собираетесь съесть последний, самый лакомый кусочек, который лежит на тарелке прямо перед вами. Но, как только вы тянетесь к еде вилкой, она исчезает (как ваш поток был внезапно приостановлен, и другой поток не постеснялся «стянуть» у вас еду). Вот такую проблему нам приходится решать при написании выполняемых одновременно и использующих общие ресурсы программ. Чтобы многопоточность работала, необходим механизм, предотвращающий возможность состязания двух потоков за один ресурс (по крайней мере, во время критичных операций).

Предотвратить такое столкновение интересов несложно — надо блокировать ресурс для других потоков, пока он находится в ведении одного потока. Первый поток, получивший доступ к ресурсу, вешает на него «замок», и тогда все остальные потоки не смогут получить этот ресурс до тех пор, пока «замок» не будет снят, и только после этого другой поток овладеет ресурсом и заблокирует его, и т. д. Если переднее сиденье машины является для детей ограниченным ресурсом, то ребенок, первым крикнувший «Чур, я спереди!», отстоял свое право на «блокировку».