×
Traktatov.net » Материаловедение » Читать онлайн
Страница 31 из 83 Настройки

2. Теория термической обработки

Задача термической обработки – путем нагрева и охлаждения вызвать необратимое изменение свойств вследствие необратимого изменения структуры. Любой вид термической обработки обычно изображается в координатах температура – время.

Собственно термическая обработка не предусматривает какого—либо иного воздействия, кроме температурного.

При термической обработке стали происходят следующие основные превращения:

1) превращение перлита в аустенит, происходящее при нагреве выше точки Ас>1 :

Fea + Fe>3 C → Fev (C) или П – А;



Рис. 8. График термической обработки: τ – время нагрева, τ – время выдержки, τ>0– время охлаждения; t >max– максимальная температура; t>ист – истинная скорость охлаждения при данной температуре, v = t>max– средняя скорость охлаждения

2) превращение аустенита в перлит, происходящее при медленном охлаждении из? – области:

Fev (C) → Fea (C) + Fe >3 C или А → П;

3) превращение аустенита в мартенсит, происходящее при быстром охлаждении из? – области:

Fev (C) → Fea (C) или А → М;

4) превращение мартенсита при нагреве (отпуске):

Fea (C) → Fea + Fe>3 C или М → П.

Описание структурных превращений, происходящих в стали при термической обработке, является одновременно и теорией термической обработки.

Превращение перлита в аустенит – необходимый этап для многих видов термической обработки.



Рис. 9. Диаграмма изотермического превращения перлита (П) в аустенит

Сталь с содержанием (А) углерода 0,8 %. Превращение перлита в аустенит реализуется при нагреве выше значения Ас >1, причем с повышением температуры оно непрерывно ускоряется. При непрерывном нагреве с различной скоростью лучи v>1 и v>2 превращения начинаются в точке а' (а' ) и заканчиваются в точке b' (b' ), которая тем выше, чем больше скорость нагрева. В связи с этим чем быстрее нагрев, тем выше должна быть температура нагрева стали, для того чтобы вызвать полное превращение перлита в аустенит, включая полное растворение карбидов и гомогенизацию аус—тенита.

В интервале между точками а'Ь' (a» b») превращение идет с разной скоростью, но приблизительно в середине интервала превращение идет с сильным поглощением теплоты настолько бурно, что на кривой нагрева образуется площадка Это обычно и есть экспериментально определяемая температура превращения Ас>1.

При исходной перлитной структуре образование аустени—та идет из многих центров, и тотчас после окончания превращения перлита в аустенит образуется мелкозернистый аус—тенит.

Дальнейший нагрев ведет к росту зерна аустенита, осуществляемого по одному из следующих механизмов: путем слияния мелких зерен в крупные, путем миграции границ зерен. Процесс слияния происходит при более низкой температуре (от +900 до +1000 °C), чем миграция (> +1100 °C), но приводит к образованию отдельных более крупных зерен, т. е к разнозернистости.

При термической обработке механические свойства стали могут изменяться в очень широких пределах. Так, например, твердость стали, содержащей 0,8 % углерода, после такой обработки возрастает до 160–600 МВ.

3. Диаграмма изотермического превращения аустенита