×
Traktatov.net » Интерстеллар: наука за кадром » Читать онлайн
Страница 48 из 138 Настройки

Рис. 9.11. Часть диска Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Темная область с разрозненными отсветами на переднем плане – это окаймленная диском тень Гаргантюа (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)


И, разумеется, Эжени и ее команда заставили газ, из которого состоит диск, вращаться по орбите вокруг Гаргантюа (иначе он устремился бы в дыру). В комбинации с гравитационным линзированием орбитальное движение газа дало выразительные эффекты перетекания, заметные на рис. 9.11.

Какое счастье было увидеть эти кадры! Впервые в истории черная дыра и ее диск показаны в голливудском фильме такими, какими мы увидим их на самом деле, когда освоим межзвездные перелеты. И впервые я, физик со стажем, видел реалистичный, гравитационно линзированный диск, огибающий дыру сверху и снизу, а не прячущийся за ее тенью.

Если диск Гаргантюа, несмотря на свое великолепие, столь слаб да еще и лишен джета, действительно ли окрестности Гаргантюа безопасны? Амелия Брэнд считает, что да…

10. Случай – краеугольный камень эволюции


Когда в фильме выяснилось, что планета Миллер непригодна для жизни, Амелия Брэнд выступила за то, чтобы отправиться к очень далекой от Гаргантюа планете Эдмундс, а не к более близкой планете Манн: «Случай – это краеугольный камень эволюции, – говорит она Куперу. – Но когда ты на орбите черной дыры, мало что может случиться: дыра засасывает и астероиды, и кометы – и все, что иначе могло бы произойти с тобой. Нужно двигаться дальше».

Этот момент – один из немногих в «Интерстеллар», где персонажи понимают науку превратно. Кристофер Нолан знал, что аргумент Амелии ошибочен, и все же решил оставить эту реплику из первоначального сценария Джоны. Ученые тоже могут ошибаться.

Хоть Гаргантюа и рада засосать в себя астероид, комету, планету, звезду или даже черную дыру поменьше, удается ей это нечасто. Почему?

Любой объект, находящийся вдали от Гаргантюа, обладает большим угловым моментом[45], если только он не летит прямо к Гаргантюа.

Большой угловой момент порождает центробежные силы, которые легко берут верх над гравитационным притяжением Гаргантюа, даже если объект, следуя орбите, подходит близко к черной дыре.

На рис. 10.1 изображен пример типичной орбиты. Объект под воздействием мощной гравитации Гаргантюа движется к дыре. Но, прежде чем он достигает горизонта, центробежные силы возрастают настолько, что отбрасывают объект назад. Так происходит снова и снова, практически бесконечно.


Рис. 10.1. Типичная орбита объекта, движущегося вокруг быстровращающейся черной дыры вроде Гаргантюа (Модель Стива Драско.)


Единственное, что может этому помешать, – случайная встреча с каким-нибудь другим массивным телом (небольшой черной дырой, звездой или планетой). Объект огибает это другое тело по траектории гравитационной пращи (см. главу 7), и его перебрасывает на новую орбиту вокруг Гаргантюа, с изменением углового момента. У новой орбиты, как и у прежней, угловой момент почти всегда велик, и центробежные силы опять спасают объект от падения в Гаргантюа. Но крайне редко происходит так, что новая орбита влечет объект прямо или почти прямо к Гаргантюа с малым угловым моментом. В этом случае центробежные силы оказываются слишком слабы, и тогда объект проходит сквозь горизонт Гаргантюа.