×
Traktatov.net » Интерстеллар: наука за кадром » Читать онлайн
Страница 130 из 138 Настройки

Я не знаю хороших книг или статей о путешествии во времени для случая, если наша Вселенная – это брана в многомерном балке. Однако, как я писал в главе 30, законы Эйнштейна, расширенные в высшие измерения, дают практически те же прогнозы, что и без балка. Подробности о том, как Купер посылает сообщения в прошлое Мёрф, см. в приложении «Некоторые технические примечания».

Глава 31. Эвакуация колоний с Земли

Относительно способа, которым Мёрф эвакуирует колонии с Земли (уменьшение G) в Кип-версии, см. мои комментарии к главе 25 выше в этом разделе.

В начале шестидесятых, когда я учился на доктора наук в Принстонском университете, один из наших профессоров-физиков, Джерард К. О'Нил, исследовал перспективы создания космических колоний в духе той, что мы видим в конце «Интерстеллар». Эти исследования, дополненные исследованиями О'Нила в NASA, вылились в замечательную книгу The High Frontier: Human Colonies in Space [O’Neill 1978], которую я вам горячо рекомендую. Обратите внимание на предисловие Фримана Дайсона, где он рассказывает, почему мечта О'Нила о космических колониях потерпела крах при его жизни, однако может воплотиться в отдаленном будущем.

Некоторые технические примечания

Законы физики, которые управляют нашей Вселенной, записываются языком математики. Для тех, кто в ладах с математикой, я дам несколько относящихся к законам физики формул и покажу, как я их использовал, чтобы получить некоторые значения для этой книги. В моих формулах часто фигурируют два числа – это скорость света c = 3,00 × 10>8 м/с и ньютоновская гравитационная постоянная G = 6,67 × 10>–11 м³/(кг · с²). Я использую экспоненциальное представление чисел, так что 10>8 означает 1 с восемью нулями – 100 000 000, или сто миллионов, а 10>–11 означает 0,00000000001. Я не стремлюсь к точности более одного процента, поэтому указываю в числах только два или три знака после запятой либо всего один, если число малоизвестно.

Глава 4. Искривления пространства и времени, приливная гравитация

Простейшее количественное представление эйнштейновского закона искривления времени: положите рядом две пары одинаковых часов, чтобы они находились в покое друг относительно друга и находились на разных расстояниях от действующего на них гравитационного притяжения. Пусть R – это дробная разница скорости хода часов, D – расстояние между ними, а g – действующее на них гравитационное ускорение (направленное от часов, которые идут быстрее, к часам, которые идут медленнее). Тогда закон Эйнштейна утверждает, что g = Rc²/D. В случае эксперимента Паунда – Ребки в гарвардской башне R равнялось 210 пикосекундам в день: 2,43 × 10>–15, а высота башни D равнялась 73 футам (22,3 метра). Подставляя эти значения в формулу для закона искривления времени, получим g = 9,8 м/с², что действительно равняется гравитационному ускорению (ускорению свободного падения) на Земле.

Глава 6. Анатомия Гаргантюа

Для черной дыры, которая, как Гаргантюа, вращается очень быстро, окружность горизонта C в экваториальной плоскости выражается формулой C = 2π