4. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединённых каким-либо союзом.
Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определённую структуру, в которой можно выделить четыре части:
1. Субъект (обозначается латинской буквой S) – это то, о чём идёт речь в суждении. Например, в суждении: «Все учебники являются книгами», – речь идёт об учебниках, поэтому субъектом данного суждения выступает понятие «учебники».
2. Предикат (обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении: «Все учебники являются книгами», – о субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие «книги».
3. Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова «есть», «является», «это» и т. п.
4. Квантор – это указатель на объём субъекта. В роли квантора могут быть слова «все», «некоторые», «ни один» и т. п.
Рассмотрим суждение: «Некоторые люди являются спортсменами». В нём субъектом выступает понятие «люди», предикатом – понятие «спортсмены», роль связки играет слово «являются», а слово «некоторые» представляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они всё равно подразумеваются. Например, в суждении: «Тигры – это хищники», – квантор отсутствует, но он подразумевается – это слово «все». С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму.
Например, если у суждения: «Все прямоугольники – это геометрические фигуры», – отбросить содержание и оставить форму, то получится: «Все S есть Р». Логическая форма суждения: «Некоторые животные не являются млекопитающими», – «Некоторые S не есть Р».
Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие отношения.
1. Равнозначность. В суждении: «Все квадраты – это равносторонние прямоугольники», – субъект «квадраты» и предикат «равносторонние прямоугольники» находятся в отношении равнозначности, потому что представляют собой равнозначные понятия (квадрат – это обязательно равносторонний прямоугольник,