Для практических целей важно, чтобы наночастицы располагались в строго определённом порядке и образовали структуру с требуемыми свойствами. Мы уже рассматривали естественные наноструктуры, когда говорили об устройстве живой клетки. Клетка состоит из огромного числа атомов и молекул, и при этом недостаточно, чтобы просто соблюдалось общее количество атомов и молекул каждого вида и пропорциональное соотношение между ними. Для того чтобы клетка могла жить, требуется, чтобы все атомы в молекулах были расположены с строго определённом порядке. Достаточно поменять местами несколько нуклеотидов в молекуле ДНК, и клетка окажется нежизнеспособной. А поскольку размеры крупных органических молекул в клетке как раз соответствуют размерам наночастиц, то процессы самоудвоения ДНК, синтеза белка и деления клетки, по сути, являются нанотехнологиями, осуществляемыми самой природой.
Другим рассмотренным нами примером нанотехнологии, но уже осуществляемой искусственно, является создание электронных интегральных микросхем, где расположенные в строгом порядке элементы имеют размеры порядка нескольких десятков нанометров, т. е. как раз представляют собой наночастицы.
Рис. 254. Размеры некоторых биологических объектов и молекул (логарифмический масштаб)
В настоящее время нанотехнология считается одним из самых перспективных направлений научно-технического развития человечества.
Рис. 255. Ричард Фейнман (1918–1988) – американский физик, лауреат Нобелевской премии по физике 1965 г.
Впервые термин «нанотехнология» употребил в 1974 г. японский физик Норио Тани гути. Однако о возможности применения нанотехнологий заговорили гораздо раньше. В 1959 г. американский физик Ричард Фейнман (рис. 255) опубликовал работу, в которой оценил перспективы уменьшения размеров производимых вещей. Он научно обосновал, что с точки зрения фундаментальных законов природы нет препятствий для того, чтобы собирать предметы из отдельных атомов и использовать их, например, для записи информации. Лекция Фейнмана «Там, внизу, много места» («There’s Plenty of Room at the Bottom»), прочитанная им в Калифорнийском технологическом институте, стала легендарной. Вот отрывок из этого выступления: «По моим оценкам, в 24 миллионах книг размером с Британскую энциклопедию содержится 10>15 бит информации. Думаю, что для хранения бита информации достаточно 100 атомов. Выходит, что вся собранная человечеством информация может храниться в кубе с гранями всего по полмиллиметра, т. е. в крохотной частичке пыли, едва различимой человеческим глазом. Так что внизу много места!»
Тогда многие восприняли его слова как фантастику. Ведь в то время ещё не существовало ни самих технологий, ни даже их проектов, позволяющих оперировать с отдельными атомами.
Главная проблема нанотехнологии заключается в том, чтобы найти способ заставить молекулы выстраиваться в определённом порядке, т. е. самоорганизовываться требуемым способом. Для решения этой проблемы был даже создан особый раздел химии – супрамолекулярная химия. Часто в нанотехнологии используют биологические крупные молекулы, по самой своей природе способные к самоорганизации. Известен, например, приём, используемый для соединения двух молекул в требуемый комплекс. Назовём эти молекулы А и В. Берётся молекула ДНК и разделяется на две взаимно комплементарные цепочки. К концу одной цепочки присоединяют молекулу А, а к другой – В. Затем оба компонента смешивают, комплементарные цепочки ДНК соединяются водородными связями, и в результате молекула А оказывается точно возле молекулы В. Между ними происходит взаимодействие, и образуется комплекс А. После этого молекулу ДНК можно удалить.