×
Traktatov.net » Логика случая » Читать онлайн
Страница 55 из 297 Настройки
. Наиболее интересный результат этого моделирования состоит в том, что эта модель эволюции путем генной дупликации воспроизводит рассмотренные нами распределения численности семейств паралогичных генов только при соблюдении вполне определенных условий: частоты рождения и смерти гена должны быть примерно равными и зависеть от численности семейства таким образом, чтобы большие семейства оказывались более динамичными, чем маленькие.

Стоит подчеркнуть, что динамика эволюции генного семейства описывается именно той стохастической моделью, которая используется в статистической физике. Однако, чтобы эта модель была совместима с полученными данными, необходимо соблюдение тонкого баланса между рождением, смертью и обновлением, и похоже, что этот баланс поддерживается естественным отбором. Примечательно, что эта и подобные модели описывают с одинаковой точностью эволюцию геномов как прокариот, так и эукариот, несмотря на существенные различия между процессами, ведущими к образованию семейств паралогичных генов. Для эукариот важнейшим, если не единственным, процессом, лежащим в основе эволюции семейств, является «честная» генная дупликация, a для прокариот количественно более важным является горизонтальный перенос генов (поэтому такие генные семейства «псевдопаралогичны»; см. гл. 5 и 7). Тот факт, что рассмотренные здесь модели одинаково хорошо описывают биологически отличающиеся процессы эволюции генома, ведущие к сходным результатам, с одной стороны, подчеркивает универсальность этих моделей, а с другой – указывает на их ограниченную ценность для биолога.


Рис. 4–8. Модель рождения, смерти и инновации в применении к эволюции генных семейств. Под рождением подразумевается генная дупликация или приобретение псевдопаралогичного гена путем горизонтального переноса с последующим расширением паралогичного семейства, смертью называется утрата гена (независимо от способа утраты), а инновацией считается приобретение нового гена, который становится родоначальником нового семейства (Karev et al., 2002)

Структура и эволюция сетей: всеобщность степенного закона и стоящие за ним фундаментальные процессы

Сеть (network) – популярнейшее понятие системной биологии, повсеместно пронизывающее современную культуру, не только в рамках биологии или науки в целом[41]. В самом деле, трудно придумать более естественный способ представления связей между многочисленными объектами, чем сеть (в математике рассматриваемую как ориентированный или неориентированный граф). В биологическом контексте узлами (или иначе – вершинами) сети часто представляют гены или белки, а ребрами (связями между узлами) обозначают их взаимодействия, которые могут быть физическими, генетическими или регуляторными (Barabasi and Oltvai, 2004). К настоящему времени разработано множество методов описания и сравнения структур (топологий) сетей (табл. 4–1). Наиболее часто для анализа используется понятие функции распределения степеней вершин, где под степенью вершины понимают число ребер, связывающих эту вершину с другими. Сравнение таких функций, выполненное для сетей различного типа, показало принципиальное отличие биологических сетей (а также многих небиологических, включая Интернет) от случайных графов: случайные графы имеют колоколообразное распределение Пуассона, а для биологических сетей распределения описываются степенной функцией (табл. 4–1). Сети, имеющие степенные функции распределения степеней вершин, называют масштабно-инвариантными сетями, так как графики их функций внешне не меняются при масштабировании (обратите внимание на прямую линию в двойных логарифмических координатах на табл. 4–1). Такие сети всегда содержат небольшое число вершин с высокими степенями, так называемых хабов (hubs), и большое число слабосвязанных вершин.