По закону сохранения импульса величина импульса, приобретенного лабораторией, должна быть равна величине импульса, потерянного частицей. Импульс частицы равен mv (поскольку v << c, формула Ньютона для импульса в данном случае точна). Скорость частицы не изменяется, и поэтому потерять часть импульса mv частица может лишь одним способом – потеряв часть массы. Уменьшение ее импульса составляет vΔm, где Δm – масса, утраченная частицей.
Приравняв ΔE v/c>2 = vΔm, находим, что ΔE/c>2 = Δm. Невысокая скорость v нашей частицы сокращается! Поскольку v << c, ответ не зависит от v. Умножив обе части формулы на c>2, получим ΔE= Δmc>2. Частица теряет массу. Количество утраченной массы Δm, умноженное на c>2, дает количество энергии, унесенной фотонами ΔE. Убираем знаки «дельта» (Δ) с обеих сторон тождества и получаем E= mc>2. Энергия, отдаваемая двумя фотонами, равна произведению массы, которую утрачивает частица, на скорость света в квадрате c>2. Теряя массу, частица испускает некоторое количество энергии, определяемое по формуле E = mc>2. Во множестве книг объясняется важность этой формулы и рассказывается, как она устроена, но там не пишут, как выводится эта формула. Теперь мы вам об этом рассказали.
Приложение 2
Бекенштейн, энтропия черных дыр и информация
На современных шестидюймовых[48] жестких дисках можно хранить примерно по 5 терабайт, или 4 × 10>13 бит, информации. Сколько бит информации, в принципе, возможно записать на шестидюймовый жесткий диск? Во-первых, поскольку это мысленный эксперимент, вообразим, что наш жесткий диск сферический – так мы сможем вложить в этот объем максимум информации. Наш жесткий диск получится размером примерно с грейпфрут, его радиус составит 7,5 см. Бекенштейн показал, что черная дыра обладает конечной энтропией, пропорциональной площади ее горизонта событий. В итоге оказалось, что энтропия горизонта черной дыры (S) в точности равна 1/4 площади горизонта событий, если измерить эту площадь в планковских единицах в квадрате (в конечном итоге точное значение вычислил Хокинг). В планковских единицах площадь поверхности черной дыры радиусом 7,5 см составляет 4π(7,5 см/1,6 × 10>–33 см)>2 = 2,76 × 10>68. Четверть от этого значения составит энтропия S = 6,9 × 10>67. Конкретное значение энтропии (возрастания неупорядоченности) соответствует конкретной мере уничтожения информации. Количество битов этой информации, соответствующее энтропии S, составляет S/ln 2. Натуральный логарифм от 2 (обозначенный в этой формуле «ln 2») равен 0,69. Здесь присутствует двойка, так как один бит информации – это один ответ на вопрос «да/нет», то есть вопрос, предполагающий два варианта ответа. (Например, игра «Да или нет» с 20 вопросами дает 20 битов информации.) Если я скажу вам, что задумал число от 1 до 2