Каждый из участников эксперимента записал 2520 цифр – трудоемкая задача, потребовавшая больше часа времени. Как и ожидал Чапанис, у добровольцев не очень хорошо получалось имитировать случайность.
Несмотря на инструкции, некоторые цифры выбирались чаще остальных. Практически у всех реже всего встречался 0. Остальные предпочтения оказались разными. Один участник эксперимента полюбил 3, другой 8.
Когда Чапанис проанализировал последовательные пары и тройки цифр, проявились определенные закономерности, причем нередко одинаковые у всех испытуемых. Вот десять наименее популярных пар (в порядке уменьшения популярности):
66 99 00 11 33 44 88 22 77 55
Все это пары одинаковых цифр.
А вот десять самых популярных пар цифр:
32 43 21 76 65 10 31 87 86 54
Видите закономерность? Во всех парах, кроме двух, вторая цифра на единицу меньше первой.
Аналогичные закономерности обнаружились и для троек цифр. Редко встречались сочетания одинаковых цифр (такие как 888). Это значит, что в последовательностях, созданных добровольцами, повторения одинаковых цифр встречались реже и были короче, чем в настоящих случайных последовательностях. Популярными, хотя и в меньшей степени, оказались также и возрастающие серии, такие как 34 или 234. Возможно, участникам эксперимента казалось, что убывающие серии выглядят более случайными, чем возрастающие. Сочетание 321 так не выделяется среди строки цифр, как 123.
Искусственные последовательности цифр оказались неслучайными, и поэтому их можно было предсказать. Чапанис вычислил: зная предыдущую цифру, он в 17 процентах случаев способен предсказать следующую. Это гораздо больше, чем 10 процентов при произвольном угадывании. Используя две последние цифры, он смог дать правильный ответ в 28 процентах случаев – почти в три раза выше ожидаемого. Если бы с такой же точностью мы могли предсказать числа, выпадающие при игре в рулетку, то быстро сколотили бы себе состояние (или… нас быстро выпроводили бы из казино).
Чапанис разделил добровольцев на две группы – «изощренных» и «относительно неизощренных». Группа изощренных, глубже знавших математику, чуть лучше имитировала случайность, однако делала те же самые ошибки, что и остальные.
Но самым удивительным открытием стало то, что длинные последовательности, например, из восьми цифр, в точности повторялись с интервалом в несколько сотен цифр. Один из добровольцев повторил последовательность 21531 четыре раза, а последовательность 21924 три раза. Другой повторил 43876538 и еще четыре последовательности из восьми цифр. Эти совпадения невозможно объяснить случайностью, скорее, амнезией или лунатизмом. Испытуемые попадали в мыслительную «колею» и повторялись, сами не осознавая этого, подобно чудаковатому дедушке, который каждый День благодарения рассказывает одну и ту же шутку.
Исследование Чапаниса представляло собой эксперимент по имитации случайности. В настоящее время этот термин используется, когда добровольцам предлагают составить случайную последовательность. Смысл в том, чтобы исследовать неспособность человека вести себя случайно.