Более мощные варианты выходных каскадов работают в режиме класса В, характеризующегося φ>ост=90° (рисунок 4.1).
Рисунок 4.1. Режим класс B
В режиме покоя транзистор закрыт и не потребляет мощности от источника питания, а открывается только в течение половины периода входного сигнала. Относительно небольшая потребляемая мощность позволяет получить в УМ класса B значение КПД до 70%. Режим класса В обычно применяется в двухтактных УМ. Основной недостаток УМ класса B — большой уровень НИ (K>Г≤10%).
Режим класса АВ занимает промежуточное значение между режимами класса А и В и применяется в двухтактных УМ. В режиме покоя через транзистор протекает небольшой ток покоя I>к>0 (рисунок 4.2), выводящий основную часть рабочей полуволны входного гармонического сигнала на участок ВАХ с относительно малой нелинейностью.
Рисунок 4.2. Режим класс AB
Угол отсечки в режиме класса АВ достигает (120…130)°, КПД и НИ — средние между значениями для режимов классов А и В.
В режиме класса C транзистор заперт смещением U>см (рисунок 4.3), φ>ост=90°, поэтому УМ класса С более экономичны, чем УМ класса В.
Рисунок 4.3. Режим класс C
Однако в режиме класса С велики НИ, поэтому класс С применяется, в основном, в генераторах и резонансных усилителях, где высшие гармонические составляющие отфильтровываются резонансным контуром в цепи нагрузки.
В мощных усилителях — преобразователях находит применение режим класса D или ключевой режим работы усилительных элементов. Данный режим, в сочетании с широтно-импульсной модуляцией, позволяет мощные экономичные УМ, в т.ч. и для систем звуковой трансляции.
Таким образом, активный элемент в УМ может работать как без отсечки тока (класс А), так и с отсечкой (классы АВ, В, С, D). Класс усиления задается положением рабочей точки в режиме покоя.
4.3. Однотактные УМ
В качестве однотактных бестрансформаторных УМмогут быть применены уже рассмотренные каскады с ОЭ (ОИ) и ОК (ОС), выполненные на мощных БТ или ПТ, причем эмиттерный (истоковый) повторитель эффективен при низкоомной (порядка единиц Ом) нагрузке. Основной недостаток таких каскадов — в режиме согласования с нагрузкой КПД≤25%.
Однотактные трансформаторные УМимеют КПД≤50% за счет оптимального согласования с нагрузкой с помощью трансформатора (рисунок 4.4).
Рисунок 4.4. Однотактный трансформаторный УМ
Сопротивление нагрузки по переменному току равно:
R>н>≈ ≈ R>н·n²,
где n — коэффициент трансформации, n=U>1/U>2.
Данный каскад находит ограниченное применение в современной схемотехнике УМ из-за ряда существенных недостатков:
◆ малого КПД;
◆ больших частотных искажений за счет трансформатора;
◆ больших НИ за счет тока подмагничивания трансформатора;
◆ невозможности реализации в виде ИМС.
Трансформаторные УМ подробно описаны в классических учебниках по УУ, например, в[5,6].
4.4. Двухтактные УМ
Двухтактные УМ ввиду возможности использования режимов АВ, В, С и D характеризуются лучшими энергетическими показателями. На рисунке 4.5 приведена схема двухтактного УМ с трансформаторной связью.
Рисунок 4.5. Двухтактный трансформаторный УМ
При работе данного УМ в режиме класса В, цепь резистора R