Это хотя и довольно простая тема, но очень важная. Правил всего два: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые, по определению из главы 1, есть величины, обратные сопротивлению (рис. 5.3). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях — при последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются (U = U>1+ U>2), что равносильно сложению сопротивлений. При параллельном соединении, наоборот, равны падения напряжений U, а складывать приходится токи (I = I>1 + I>2), что равносильно сложению проводимостей. Если вы не поняли сказанного, то посидите над рис. 5.3 с карандашом и бумагой и выведите выражения закона Ома для каждого из случаев — и все станет на свои места.
Последовательное соединение резисторов R = R>1 + R>2
Параллельное соединение резисторов 1/R = 1/R>1 + 1/R>2
Рис. 5.3.Последовательное и параллельное соединение резисторов
Из приведенных общих правил вытекает несколько практических, которые полезно заучить:
□ при последовательном соединении:
• пара резисторов имеет сопротивление всегда больше, чем сопротивление резистора с большим номиналом (правило «больше большего»);
• если номиналы резисторов равны, то суммарное сопротивление ровно вдвое больше каждого номинала;
• если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно большему номиналу (типичный случай упоминался в главе 1 — в примере на рис. 1.4 мы игнорируем сопротивление проводов, т. к. оно много меньше сопротивления резисторов);
□ при параллельном соединении:
• пара резисторов имеет сопротивление всегда меньше, чем сопротивление резистора с меньшим номиналом (правило «меньше меньшего»);
• если номиналы резисторов равны, то суммарное сопротивление ровно вдвое меньше каждого номинала;
• если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно меньшему номиналу (это также можно проиллюстрировать на примере рис. 1.4, где мы игнорируем наличие вольтметра, включенного параллельно R2, т. к. его сопротивление намного больше сопротивления резистора).
Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы, — приблизительно во столько раз снизится их общее сопротивление по отношению к меньшему. Проверить это легко: пусть одно сопротивление имеет номинал 3,3 кОм, а второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3 + 6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате очень близкое значение 2,22 кОм.