Как следует из определения частоты, размерность герца есть единица, деленная на секунду: 1 Гц= 1/с. Это просто-напросто означает, что колебание с частотой 1 Гц имеет период повторения ровно 1 секунду. Соответственно, 1 кГц (килогерц) означает, что в одной секунде укладывается тысяча периодов, 1 МГц (мегагерц) — миллион периодов и т. п.
Рис. 4.2.График простого синусоидального колебания
В дальнейшем под «величиной» мы чаще всего будем иметь в виду напряжение (для тока все выглядит аналогично). Математический закон, описывающий поведение синусоидального напряжения (U) от времени (t), выглядит так:
U = A·sin(2πft). (1)
Здесь π есть хорошо нам знакомое число «пи», т. е. отношение длины окружности к ее диаметру, равное 3,1415… Произведение 2πf носит специальное название круговая частота и обозначается буквой ω (омега). Физический смысл круговой частоты — величина угла (измеряемого в радианах), пробегаемого нашей синусоидальной кривой за секунду. Поскольку мы обещали не заниматься радиочастотной техникой, то углубляться в дальнейшие абстракции вроде представления переменных колебаний через комплексные числа, где понятие круговой частоты является ключевым, мы не будем — для практических нужд нам пока хватит и более наглядных определений обычной частоты через период.
А что будет, если график немного подвигать вдоль оси абсцисс? Как видно из рис. 4.3, это равносильно признанию того факта, что в нулевой момент времени наше колебание не равно нулю. На рис. 4.3 второе колебание начинается с максимального значения амплитуды, а не с нуля. При этом сдвигаются моменты времени, соответствующие целому и половине периода, а в уравнении (1) появляется еще одна величина, обозначаемая буквой φ (фи) и измеряемая в единицах угла — радианах:
U = A·sin(2πft + φ). (2)
Рис. 4.3.График синусоидальных колебаний, сдвинутых по фазе на четверть периода
Эта величина носит название фазы. Взятая для одного отдельного колебания, величина фазы выглядит не имеющей особого смысла, т. к. мы всегда можем сместить точку начала отсчета времени так, чтобы привести уравнение к виду (1), а, соответственно, график — к виду рис. 4.2, и при этом ничего не изменится. Однако все будет выглядеть иначе, если мы имеем два связанных между собой колебания — скажем, напряжения в разных точках одной схемы. В этом случае нам может быть важно, как соотносятся их величины в каждый момент времени, и тогда фаза одного переменного напряжения относительно другого (называемая в этом случае сдвигом или разностью фаз) и будет характеризовать такое соотношение. Для колебаний, представленных на рис. 4.3, сдвиг фаз равен 90° (π/2 радиан). Именно для наблюдения таких колебаний совместно и предназначен многоканальный или многолучевой осциллограф — в обычном фаза колебания определяется только настройками синхронизации.
Интересно, что получится, если мы такие «сдвинутые» колебания суммируем? Не надо думать, что это есть лишь теоретическое упражнение — суммировать электрические колебания разного вида нам придется довольно часто. Математически это будет выглядеть, как сложение формул (1) и (2):